Login | STScI Home | HubbleSite | Copyright, Content Use, and Policies
STScI Webcast

2017 Hot Sci @ STScI

Infrared Studies of the Variability and Mass Loss of Dusty Asymptotic Giant Branch Stars in the Magellanic Cloud

Presented by: Ben Sargent  (Space Telescope Science Institute)
Category: Science Colloquia   Duration: 30 minutes   Broadcast date: August 23, 2017
  • Bookmark/Share

The asymptotic giant branch (AGB) phase is one of the last phases of a star’s life. AGB stars lose mass in an outflow in which dust condenses and is pushed away from the star. Extreme AGB stars are so named because their very red colors suggest very large amounts of dust, which in turn suggests extremely high mass-loss rates. AGB stars also vary in their brightness, and studies show that extreme AGB stars tend to have longer periods than other AGB stars and are more likely to be fundamental mode pulsators than other AGB stars. Extreme AGB stars are difficult to study, as their colors are so red due to their copious amounts of circumstellar dust that they are often not detected at optical wavelengths. Therefore, they must be observed at infrared wavelengths to explore their variability. Using the Spitzer Space Telescope, my team and I have observed a sample of extreme AGB stars in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) over Cycles 9 through 12 during the Warm Spitzer mission. For each cycle, we typically observed a set of extreme AGB stars at both 3.6 and 4.5 microns wavelength approximately monthly for most of a year. These observations reveal a wide range of variability properties. I present results from our analysis of the data obtained from these Spitzer variability programs.